
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Abstract classes and methods

 Final

 Static

© 2023 Arthur Hoskey. All
rights reserved.

abstract

 You can make classes whose sole purpose is to
be inherited from.

 These are called "abstract" classes.

 An abstract class can hold code that has common
behavior or data.

 You cannot make an instance of an abstract
class.

© 2023 Arthur Hoskey. All
rights reserved.

Coding with Inheritance

 Write programs that process objects that share the same
base class in a class hierarchy.

 The base class contains the common behavior that we care
about.

 Put common behavior in base class.

 Program to the common behavior.

© 2023 Arthur Hoskey. All
rights reserved.

Why Create an Abstract Class

 What if it does not make sense to create instances of the
base class.

 For example, think about Shape, Rectangle, and Circle.

 It does not make sense to create an instance of Shape
because it is too general or abstract.

 In this case we can make Shape an abstract base class.

 An abstract class still defines the common behavior that we
care about.

 We just cannot create instances of an abstract class.

© 2023 Arthur Hoskey. All
rights reserved.

Abstract Class

 An abstract class is like a "template".

 In MS Word you have different templates for different types
of documents.

 In MS Word you use the template as a starting off point for
your document. The template itself is not a finished
product.

© 2023 Arthur Hoskey. All
rights reserved.

Abstract Class Example

 Now revisit the employee salary example.

 We will now make the Employee class
abstract.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Abstract Class Example

public abstract class Employee

{

protected double salary;

public Employee(double newSalary)

{ salary = newSalary; }

public double GetSalary()

{ return salary; }

public void SetSalary(double newSalary)

{ salary = newSalary; }

public abstract void ShowWeeklySalary(); // Derived classes

} //MUST override this

© 2023 Arthur Hoskey. All
rights reserved.

Abstract Method

 An abstract class can have abstract methods (as well as
normal methods).

 There is one abstract method in Employee:

public abstract void ShowWeeklySalary();

 An abstract method does NOT have a body.

 It only lists the method name, parameters, and return
type.

 Derived classes must give a definition for all abstract
methods on its base class (basically).

 The only way for a derived class to not give a definition
would be to also make the derived class abstract.

© 2023 Arthur Hoskey. All
rights reserved.

Derive from an Abstract Class

public class HourlyEmployee extends Employee

{

public HourlyEmployee(double newSalary)

{

super(newSalary);

}

// OVERRIDE Employee::ShowWeeklySalary()

@Override

public void ShowWeeklySalary()

{

double weeklySalary = salary * 40;

System.out.printf("Hourly Rate = $%.2f\n", salary);

System.out.printf("Weekly Salary = $%.2f\n",weeklySalary);

}

}

HourlyEmployee MUST

give a definition for

ShowWeeklySalary or it

will not compile

© 2023 Arthur Hoskey. All
rights reserved.

Derive from an Abstract Class

public class SalaryEmployee extends Employee

{

public SalaryEmployee(double newSalary)

{

super(newSalary);

}

// OVERRIDE Employee::ShowWeeklySalary()

@Override

public void ShowWeeklySalary()

{

double weeklySalary = salary / 52.0;

System.out.printf("Yearly Rate = $%.2f\n", salary);

System.out.printf("Weekly Salary = $%.2f\n",weeklySalary);

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Use Abstract Class

public static void main(String[] args)

{

//Employee e = new Employee(30); // NOT ALLOWED.
// Employee is abstract!!!

Employee e1;

e1 = new SalaryEmployee(52000);

Employee e2;

e2 = new HourlyEmployee(20);

e1.ShowWeeklySalary();

e2.ShowWeeklySalary();

}

© 2023 Arthur Hoskey. All
rights reserved.

Create instance of

derived class and put

the reference in an

abstract class variable

You can declare a variable of

an abstract class type

You can call an abstract method. It

will use the ShowWeeklySalary

definition for the underlying type:

e1 → Calls SalaryEmployee version

e2 → Calls HourlyEmployee version

final

 Now on to final…

© 2023 Arthur Hoskey. All
rights reserved.

final Class

 Can you prevent a class from being
inherited from?

 Yes.

 You must declare the class as "final".

 A "final" class cannot be inherited from.

© 2023 Arthur Hoskey. All
rights reserved.

final Class

public final class Employee {

// Employee members go here…

}

public class Manager extends Employee {

// Manager members go here…

}

 Cannot inherit from the Employee class
since its final.

© 2023 Arthur Hoskey. All
rights reserved.

final Method

 Can you prevent a method from being
overridden?

 Yes.

 You must declare the method as "final".

 A final method cannot be overridden.

© 2023 Arthur Hoskey. All
rights reserved.

final Method

public class Employee {

public final void myMethod() {

System.out.println("myMethod called");

}

}

public class Manager extends Employee {

@Override

public void myMethod() {

}

}

 Cannot override a method that is defined as final.

© 2023 Arthur Hoskey. All
rights reserved.

Static

 Now on to static…

© 2023 Arthur Hoskey. All
rights reserved.

Static

 Both methods and variables can be declared static.

 A static variable is shared by every instance of the
class.
◦ There is only 1 copy of a static variable in memory.

 If you make a change from one instance you will
"see" that change in another instance.

 Use a static variable if you don’t need a different
version of that variable for EVERY instance of the
class.

© 2023 Arthur Hoskey. All
rights reserved.

Static

 INSTANCE VARIABLES:

 Suppose a student class:

public class Student {

public int id;

public int rank;

public Student(int newId, int newRank) {

id = newId;

rank = newRank;

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Static

 INSTANCE VARIABLES:

 3 Instances of student. Each has its own
set of variables.

Student s1, s2, s3;

s1 = new Student(12, 3);

s2 = new Student(10, 100);

s3 = new Student(7, 70);

s2:Student
10 (id)
100 (rank)

s3:Student
7 (id)
70 (rank)

s1:Student
12(id)
3 (rank)

© 2023 Arthur Hoskey. All
rights reserved.

Static

 Now suppose we want to store a count of
the total number of students.

 The number of students is not specific to
any instance so it should be defined as
static.

 For example…

© 2023 Arthur Hoskey. All
rights reserved.

Static

public class Student {

int id;

int rank;

static int count;

public Student(int newId, int newRank) {

id = newId;

rank = newRank;

}

}

Use the static keyword to declare a
variable as static.

© 2023 Arthur Hoskey. All
rights reserved.

Static

 A static variable is shared by all instances.

s1:Student
12(id)
3 (rank)
(count)

s2:Student
10 (id)
100 (rank)

(count)

s3:Student
7 (id)
70 (rank)

(count)

3

© 2023 Arthur Hoskey. All
rights reserved.

Static

 You can access a static variable even if
you do not declare an instance of the
class.

 Use the class name followed by a dot and
then the variable name.

For example:

Student.count = 3;

This sets the count variable to 3.

© 2023 Arthur Hoskey. All
rights reserved.

Static Methods

 Now on to static methods…

© 2023 Arthur Hoskey. All
rights reserved.

Static Method Access Within a
Class

 Methods can also be declared as static.

 Static methods can only access static
variables within a class.

 Static methods CANNOT access instance
variables or instance methods within a
class.

© 2023 Arthur Hoskey. All
rights reserved.

Static Method - main

 Why is main() declared static?

 main is static so that the JVM can call it without
creating an object.

 The JVM will automatically call the static main method
when the program starts.

 Regular instance methods can only be used from an
instance of a class so main needs to be static if the
JVM needs to call it without creating an object.

© 2023 Arthur Hoskey. All
rights reserved.

Accessing Instance Variables

 Only instance methods can access instance variables within a class.

 In the code below num is an instance variable.

 num cannot be accessed from main because main is static.

 otherNum is static and can be accessed from main.

public class Main {

public int num; // Instance variable

public static otherNum; // static variable

public static void main(String[] args) {

num = 1;

otherNum = 1;

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Main is a static method so

it cannot access an

instance variable

otherNum can be accessed

from main because it is a

static variable.

Calling Static vs Instance Methods

 Cannot call an instance method from a static method within a
class

public class Main {

public void myInstanceMethod() {

System.out.println("myInstanceMethod called");

}

public static void main(String[] args) {

myInstanceMethod();

}

}

 Instance methods must be called with respect to an instance of a
class (shown on an upcoming slide).

© 2023 Arthur Hoskey. All
rights reserved.

Main is a static method.

You cannot call an

instance method from a

static method.

Call Static Method Within a Class

 You can call a static method from another static method within a
class

public class Main {

public static void myStaticMethod() {

System.out.println("myStaticMethod called");

}

public static void main(String[] args) {

myStaticMethod();

}

}

© 2023 Arthur Hoskey. All
rights reserved.

This method call works

because myStaticMethod

is defined as static

Call Instance Method

 Instance methods must be called with respect to an instance
when inside of a static method.

public class Main {

public void myMethod() {

System.out.println("myMethod called");

}

public static void main(String[] args) {

Main m = new Main();

m.myMethod();

}

}

 Instance methods must be called with respect to an instance of
the class (next slide for this).

© 2023 Arthur Hoskey. All
rights reserved.

Instance methods must be

called with respect to an

instance (m is the instance)

Instance method (not static)

Call Instance Method

public class X {

public int num;

public void method1() {

// method1 code goes here…

}

public void method2() {

method1();

}

}

© 2023 Arthur Hoskey. All
rights reserved.

Can we do this?

We are trying to call an

instance method, but it

is not being done with

respect to an object.

Call Instance Method

public class X {

public int num;

public void method1() {

// method1 code goes here…

}

public void method2() {

method1();

}

}

© 2023 Arthur Hoskey. All
rights reserved.

YES!!! You can do this.

method1 is being called with

respect to the this reference.

Since method2 is an instance

method (not static) it will have a

this reference when it is called.

End of Presentation

 End of Presentation

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: abstract
	Slide 4: Coding with Inheritance
	Slide 5: Why Create an Abstract Class
	Slide 6: Abstract Class
	Slide 7: Abstract Class Example
	Slide 8: Abstract Class Example
	Slide 9: Abstract Method
	Slide 10: Derive from an Abstract Class
	Slide 11: Derive from an Abstract Class
	Slide 12: Use Abstract Class
	Slide 13: final
	Slide 14: final Class
	Slide 15: final Class
	Slide 16: final Method
	Slide 17: final Method
	Slide 18: Static
	Slide 19: Static
	Slide 20: Static
	Slide 21: Static
	Slide 22: Static
	Slide 23: Static
	Slide 24: Static
	Slide 25: Static
	Slide 26: Static Methods
	Slide 27: Static Method Access Within a Class
	Slide 28: Static Method - main
	Slide 29: Accessing Instance Variables
	Slide 30: Calling Static vs Instance Methods
	Slide 31: Call Static Method Within a Class
	Slide 32: Call Instance Method
	Slide 33: Call Instance Method
	Slide 34: Call Instance Method
	Slide 35: End of Presentation

