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Today’s Lecture

 Abstract classes and methods

 Final

 Static
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abstract

 You can make classes whose sole purpose is to 
be inherited from.

 These are called "abstract" classes. 

 An abstract class can hold code that has common 
behavior or data.

 You cannot make an instance of an abstract 
class.
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Coding with Inheritance 

 Write programs that process objects that share the same 
base class in a class hierarchy.

 The base class contains the common behavior that we care 
about.

 Put common behavior in base class.

 Program to the common behavior.
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Why Create an Abstract Class

 What if it does not make sense to create instances of the 
base class. 

 For example, think about Shape, Rectangle, and Circle.

 It does not make sense to create an instance of Shape 
because it is too general or abstract.

 In this case we can make Shape an abstract base class.

 An abstract class still defines the common behavior that we 
care about.

 We just cannot create instances of an abstract class.
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Abstract Class

 An abstract class is like a "template".

 In MS Word you have different templates for different types 
of documents.

 In MS Word you use the template as a starting off point for 
your document. The template itself is not a finished 
product.
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Abstract Class Example

 Now revisit the employee salary example.

 We will now make the Employee class 
abstract.

 For example…
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Abstract Class Example

public abstract class Employee 

{

protected double salary;

public Employee(double newSalary)

{ salary = newSalary; }

public double GetSalary()

{ return salary; }

public void SetSalary(double newSalary)

{ salary = newSalary; }

public abstract void ShowWeeklySalary(); // Derived classes

} //MUST override this
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Abstract Method

 An abstract class can have abstract methods (as well as 
normal methods).

 There is one abstract method in Employee:

public abstract void ShowWeeklySalary();

 An abstract method does NOT have a body.

 It only lists the method name, parameters, and return 
type.

 Derived classes must give a definition for all abstract 
methods on its base class (basically).

 The only way for a derived class to not give a definition 
would be to also make the derived class abstract.
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Derive from an Abstract Class

public class HourlyEmployee extends Employee

{

public HourlyEmployee(double newSalary)

{

super(newSalary);

}

// OVERRIDE Employee::ShowWeeklySalary()

@Override

public void ShowWeeklySalary()

{

double weeklySalary = salary * 40;

System.out.printf("Hourly Rate   = $%.2f\n", salary);

System.out.printf("Weekly Salary = $%.2f\n",weeklySalary);

}

}

HourlyEmployee MUST 

give a definition for 

ShowWeeklySalary or it 

will not compile
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Derive from an Abstract Class

public class SalaryEmployee extends Employee

{

public SalaryEmployee(double newSalary)

{

super(newSalary);

}

// OVERRIDE Employee::ShowWeeklySalary()

@Override

public void ShowWeeklySalary()

{

double weeklySalary = salary / 52.0;

System.out.printf("Yearly Rate   = $%.2f\n", salary);

System.out.printf("Weekly Salary = $%.2f\n",weeklySalary);

}

}
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Use Abstract Class

public static void main(String[] args) 

{

//Employee e = new Employee(30); // NOT ALLOWED. 
// Employee is abstract!!!

Employee e1;

e1 = new SalaryEmployee(52000);

Employee e2;

e2 = new HourlyEmployee(20);

e1.ShowWeeklySalary();

e2.ShowWeeklySalary();

}

© 2023 Arthur Hoskey. All 
rights reserved.

Create instance of 

derived class and put 

the reference in an 

abstract class variable

You can declare a variable of 

an abstract class type

You can call an abstract method. It 

will use the ShowWeeklySalary

definition for the underlying type:

e1 → Calls SalaryEmployee version

e2 → Calls HourlyEmployee version



final

 Now on to final…
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final Class

 Can you prevent a class from being 
inherited from?

 Yes. 

 You must declare the class as "final".

 A "final" class cannot be inherited from.
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final Class

public final class Employee {

// Employee members go here…

}

public class Manager extends Employee {

// Manager members go here…

}

 Cannot inherit from the Employee class 
since its final.
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final Method

 Can you prevent a method from being 
overridden?

 Yes. 

 You must declare the method as "final".

 A final method cannot be overridden.
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final Method

public class Employee {

public final void myMethod() {

System.out.println("myMethod called");

}

}

public class Manager extends Employee {

@Override

public void myMethod() {

}

}

 Cannot override a method that is defined as final.
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Static

 Now on to static…
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Static

 Both methods and variables can be declared static.

 A static variable is shared by every instance of the 
class.
◦ There is only 1 copy of a static variable in memory.

 If you make a change from one instance you will 
"see" that change in another instance.

 Use a static variable if you don’t need a different 
version of that variable for EVERY instance of the 
class.
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Static

 INSTANCE VARIABLES:

 Suppose a student class:

public class Student {

public int id;

public int rank;

public Student(int newId, int newRank) {

id = newId;

rank = newRank;

}

}
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Static

 INSTANCE VARIABLES:

 3 Instances of student. Each has its own 
set of variables.

Student s1, s2, s3;

s1 = new Student(12, 3);

s2 = new Student(10, 100);

s3 = new Student(7, 70);

s2:Student
10 (id)
100 (rank)

s3:Student
7 (id)
70 (rank)

s1:Student
12(id)
3 (rank)
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Static

 Now suppose we want to store a count of 
the total number of students. 

 The number of students is not specific to 
any instance so it should be defined as 
static.

 For example…
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Static

public class Student {

int id;

int rank;

static int count;

public Student(int newId, int newRank) {

id = newId;

rank = newRank;

}

}

Use the static keyword to declare a 
variable as static.
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Static

 A static variable is shared by all instances.

s1:Student
12(id)
3 (rank)
(count)

s2:Student
10 (id)
100 (rank)

(count)

s3:Student
7 (id)
70 (rank)

(count)

3
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Static

 You can access a static variable even if 
you do not declare an instance of the 
class.

 Use the class name followed by a dot and 
then the variable name.

For example:

Student.count = 3;

This sets the count variable to 3.
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Static Methods

 Now on to static methods…
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Static Method Access Within a 
Class

 Methods can also be declared as static.

 Static methods can only access static 
variables within a class.

 Static methods CANNOT access instance 
variables or instance methods within a 
class.

© 2023 Arthur Hoskey. All 
rights reserved.



Static Method - main

 Why is main() declared static?

 main is static so that the JVM can call it without 
creating an object.

 The JVM will automatically call the static main method 
when the program starts.

 Regular instance methods can only be used from an 
instance of a class so main needs to be static if the 
JVM needs to call it without creating an object.
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Accessing Instance Variables

 Only instance methods can access instance variables within a class.

 In the code below num is an instance variable.

 num cannot be accessed from main because main is static.

 otherNum is static and can be accessed from main.

public class Main {

public int num; // Instance variable

public static otherNum; // static variable

public static void main(String[] args) {

num = 1; 

otherNum = 1;

}

}
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Main is a static method so 

it cannot access an 

instance variable

otherNum can be accessed 

from main because it is a 

static variable.



Calling Static vs Instance Methods

 Cannot call an instance method from a static method within a 
class

public class Main {

public void myInstanceMethod() {

System.out.println("myInstanceMethod called"); 

}

public static void main(String[] args) {

myInstanceMethod();    

}

}

 Instance methods must be called with respect to an instance of a 
class (shown on an upcoming slide).
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Main is a static method. 

You cannot call an 

instance method from a 

static method.



Call Static Method Within a Class

 You can call a static method from another static method within a 
class

public class Main {

public static void myStaticMethod() {

System.out.println("myStaticMethod called"); 

}

public static void main(String[] args) {

myStaticMethod();    

}

}
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This method call works 

because myStaticMethod

is defined as static



Call Instance Method

 Instance methods must be called with respect to an instance 
when inside of a static method.

public class Main {

public void myMethod() {

System.out.println("myMethod called"); 

}

public static void main(String[] args) {

Main m = new Main();

m.myMethod();    

}

}

 Instance methods must be called with respect to an instance of 
the class (next slide for this).

© 2023 Arthur Hoskey. All 
rights reserved.

Instance methods must be 

called with respect to an 

instance (m is the instance)

Instance method (not static)



Call Instance Method

public class X {

public int num;

public void method1() {

// method1 code goes here…

}

public void method2() {

method1();

}

}
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Can we do this? 

We are trying to call an 

instance method, but it 

is not being done with 

respect to an object.



Call Instance Method

public class X {

public int num;

public void method1() {

// method1 code goes here…

}

public void method2() {

method1();

}

}
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YES!!! You can do this. 

method1 is being called with 

respect to the this reference. 

Since method2 is an instance 

method (not static) it will have a 

this reference when it is called.



End of Presentation

 End of Presentation
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